50 resultados para Adhesion

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial dysfunction is the initiating event of atherosclerosis. The expression of connexin40 (Cx40), an endothelial gap junction protein, is decreased during atherogenesis. In the present report, we sought to determine whether Cx40 contributes to the development of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface platforms were engineered from poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-g-PMOXA) copolymers to study the mechanisms involved in the non-specific adhesion of Escherichia coli (E. coli) bacteria. Copolymers with three different grafting densities (PMOXA chains/Lysine residue of 0.09, 0.33 and 0.56) were synthesized and assembled on niobia (Nb O ) surfaces. PLL-modified and bare niobia surfaces served as controls. To evaluate the impact of fimbriae expression on the bacterial adhesion, the surfaces were exposed to genetically engineered E. coli strains either lacking, or constitutively expressing type 1 fimbriae. The bacterial adhesion was strongly influenced by the presence of bacterial fimbriae. Non-fimbriated bacteria behaved like hard, charged particles whose adhesion was dependent on surface charge and ionic strength of the media. In contrast, bacteria expressing type 1 fimbriae adhered to the substrates independent of surface charge and ionic strength, and adhesion was mediated by non-specific van der Waals and hydrophobic interactions of the proteins at the fimbrial tip. Adsorbed polymer mass, average surface density of the PMOXA chains, and thickness of the copolymer films were quantified by optical waveguide lightmode spectroscopy (OWLS) and variable-angle spectroscopic ellipsometry (VASE), whereas the lateral homogeneity was probed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Streaming current measurements provided information on the charge formation of the polymer-coated and the bare niobia surfaces. The adhesion of both bacterial strains could be efficiently inhibited by the copolymer film only with a grafting density of 0.33 characterized by the highest PMOXA chain surface density and a surface potential close to zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep vein thrombosis (DVT) and its complication, pulmonary embolism, are frequent causes of disability and mortality. Although blood flow disturbance is considered an important triggering factor, the mechanism of DVT initiation remains elusive. Here we show that 48-hour flow restriction in the inferior vena cava (IVC) results in the development of thrombi structurally similar to human deep vein thrombi. von Willebrand factor (VWF)-deficient mice were protected from thrombosis induced by complete (stasis) or partial (stenosis) flow restriction in the IVC. Mice with half normal VWF levels were also protected in the stenosis model. Besides promoting platelet adhesion, VWF carries Factor VIII. Repeated infusions of recombinant Factor VIII did not rescue thrombosis in VWF(-/-) mice, indicating that impaired coagulation was not the primary reason for the absence of DVT in VWF(-/-) mice. Infusion of GPG-290, a mutant glycoprotein Ib?-immunoglobulin chimera that specifically inhibits interaction of the VWF A1 domain with platelets, prevented thrombosis in wild-type mice. Intravital microscopy showed that platelet and leukocyte recruitment in the early stages of DVT was dramatically higher in wild-type than in VWF(-/-) IVC. Our results demonstrate a pathogenetic role for VWF-platelet interaction in flow disturbance-induced venous thrombosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction between differentiating neurons and the extracellular environment guides the establishment of cell polarity during nervous system development. Developing neurons read the physical properties of the local substrate in a contact-dependent manner and retrieve essential guidance cues. In previous works we demonstrated that PC12 cell interaction with nanogratings (alternating lines of ridges and grooves of submicron size) promotes bipolarity and alignment to the substrate topography. Here, we investigate the role of focal adhesions, cell contractility, and actin dynamics in this process. Exploiting nanoimprint lithography techniques and a cyclic olefin copolymer, we engineered biocompatible nanostructured substrates designed for high-resolution live-cell microscopy. Our results reveal that neuronal polarization and contact guidance are based on a geometrical constraint of focal adhesions resulting in an angular modulation of their maturation and persistence. We report on ROCK1/2-myosin-II pathway activity and demonstrate that ROCK-mediated contractility contributes to polarity selection during neuronal differentiation. Importantly, the selection process confined the generation of actin-supported membrane protrusions and the initiation of new neurites at the poles. Maintenance of the established polarity was independent from NGF stimulation. Altogether our results imply that focal adhesions and cell contractility stably link the topographical configuration of the extracellular environment to a corresponding neuronal polarity state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During development and regeneration of the mammalian nervous system, directional signals guide differentiating neurons toward their targets. Soluble neurotrophic molecules encode for preferential direction over long distances while the local topography is read by cells in a process requiring the establishment of focal adhesions. The mutual interaction between overlapping molecular and topographical signals introduces an additional level of control to this picture. The role of the substrate topography was demonstrated exploiting nanotechnologies to generate biomimetic scaffolds that control both the polarity of differentiating neurons and the alignment of their neurites. Here PC12 cells contacting nanogratings made of copolymer 2-norbornene ethylene (COC), were alternatively stimulated with Nerve Growth Factor, Forskolin, and 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic (8CPT-2Me-cAMP) or with a combination of them. Topographical guidance was differently modulated by the alternative stimulation protocols tested. Forskolin stimulation reduced the efficiency of neurite alignment to the nanogratings. This effect was linked to the inhibition of focal adhesion maturation. Modulation of neurite alignment and focal adhesion maturation upon Forskolin stimulation depended on the activation of the MEK/ERK signaling but were PkA independent. Altogether, our results demonstrate that topographical guidance in PC12 cells is modulated by the activation of alternative neuronal differentiation pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Posttraumatic stress disorder (PTSD) and circulating cellular adhesion molecules (CAMs) predict cardiovascular risk. We hypothesized a positive relationship between PTSD caused by myocardial infarction (MI) and soluble CAMs. We enrolled 22 post-MI patients with interviewer-rated PTSD and 22 post-MI patients with no PTSD. At 32±6months after index MI, all patients were re-scheduled to undergo the Clinician-Administered PTSD Scale (CAPS) interview and had blood collected to assess soluble CAMs at rest and after the CAPS interview. Relative to patients with no PTSD, those with PTSD had significantly higher levels of soluble vascular cellular adhesion molecule (sVCAM)-1 and intercellular adhesion molecule (sICAM)-1 at rest and, controlling for resting CAM levels, significantly higher sVCAM-1 and sICAM-1 after the interview. Greater severity of PTSD predicted significantly higher resting levels of sVCAM-1 and soluble P-selectin in patients with PTSD. At follow-up, patients with persistent PTSD (n=15) and those who had remitted (n=7) did not significantly differ in CAM levels at rest and after the interview; however, both these groups had significantly higher sVCAM-1 and sICAM-1 at rest and also after the interview compared to patients with no PTSD. Elevated levels of circulating CAMs might help explain the psychophysiologic link of PTSD with cardiovascular risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tenascins are extracellular matrix glycoproteins associated with cell motility, proliferation and differentiation. Tenascin-C inhibits cell spreading by binding to fibronectin; tenascin-R and tenascin-X also have anti-adhesive properties in vitro. Here we have studied the adhesion modulating properties of the most recently characterized tenascin, tenascin-W. C2C12 cells, a murine myoblast cell line, will form broad lamellipodia with stress fibers and focal adhesion complexes after culture on fibronectin. In contrast, C2C12 cells cultured on tenascin-W fail to spread and form stress fibers or focal adhesion complexes, and instead acquire a multipolar shape with short, actin-tipped pseudopodia. The same stellate morphology is observed when C2C12 cells are cultured on a mixture of fibronectin and tenascin-W, or on fibronectin in the presence of soluble tenascin-W. Tenascin-W combined with fibronectin also inhibits the spreading of mouse embryo fibroblasts when compared with cells cultured on fibronectin alone. The similarity between the adhesion modulating effects of tenascin-W and tenascin-C in vitro led us to study the possibility of tenascin-W compensating for tenascin-C in tenascin-C knockout mice, especially during epidermal wound healing. Dermal fibroblasts harvested from a tenascin-C knockout mouse express tenascin-W, but dermal fibroblasts taken from a wild type mouse do not. However, there is no upregulation of tenascin-W in the dermis of tenascin-C knockout mice, or in the granulation tissue of skin wounds in tenascin-C knockout animals. Similarly, tenascin-X is not upregulated in early wound granulation tissue in the tenascin-C knockout mice. Thus, tenascin-W is able to inhibit cell spreading in vitro and it is upregulated in dermal fibroblasts taken from the tenascin-C knockout mouse, but neither it nor tenascin-X are likely to compensate for missing tenascin-C during wound healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of various combinations of enamel matrix derivative (EMD) and grafting materials has been shown to promote periodontal wound healing/regeneration. However, the downstream cellular behavior of periodontal ligament (PDL) cells and osteoblasts has not yet been studied. Furthermore, it is unknown to what extent the bleeding during regenerative surgery may influence the adsorption of exogenous proteins to the surface of bone grafting materials and the subsequent cellular behavior. In the present study, the aim is to test EMD adsorption to the surface of natural bone mineral (NBM) particles in the presence of blood and determine the effect of EMD coating to NBM particles on downstream cellular pathways, such as adhesion, proliferation, and differentiation of primary human osteoblasts and PDL cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The objective of the study was to evaluate the efficacy of an additional usage of a diamond-coated curette on surface roughness, adhesion of periodontal ligament (PDL) fibroblasts, and of Streptococcus gordonii in vitro. MATERIALS AND METHODS: Test specimens were prepared from extracted teeth and exposed to instrumentation with conventional Gracey curettes with or without additional use of diamond-coated curettes. Surface roughness (Ra and Rz) was measured before and following treatment. In addition, the adhesion of PDL fibroblasts for 72 h and adhesion of S. gordonii ATCC 10558 for 2 h have been determined. RESULTS: Instrumentation with conventional Gracey curettes reduced surface roughness (median Ra before: 0.36 μm/after: 0.25 μm; p < 0.001; median Rz before: 2.34 μm/after: 1.61 μm; p < 0.001). The subsequent instrumentation with the diamond-coated curettes resulted in a median Ra of 0.31 μm/Rz of 2.06 μm (no significance in comparison to controls). The number of attached PDL fibroblasts did not change following scaling with Gracey curettes. The additional instrumentation with the diamond-coated curettes resulted in a two-fold increase in the number of attached PDL fibroblasts but not in the numbers of adhered bacteria. CONCLUSIONS: Treatment of root surfaces with conventional Gracey curettes followed by subsequent polishing with diamond-coated curettes may result in a root surface which provides favorable conditions for the attachment of PDL fibroblasts without enhancing microbial adhesion. CLINICAL RELEVANCE: The improved attachment of PDL fibroblasts and the limited microbial adhesion on root surfaces treated with scaling with conventional Gracey curettes followed by subsequent polishing with diamond-coated curettes may favor periodontal wound healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a need for evaluating zirconia surface modifications and their potential impact on the biological response of osteogenic cells. Grit blasted zirconia discs were either left untreated or underwent acid or alkaline etching. Adhesion and osteogenic differentiation of MG63 cells was determined after one week of culture. The macro-scaled roughness of the grit blasted zirconia discs, independent of the surface treatment, was within a narrow range and only slightly smoother than titanium discs. However, the alkaline- and acid-etching led to an increase of the micro-roughness of the surface. The surface modifications had no effect on cell spreading and did not cause significant change in the expression of differentiation markers. Thus, in this respective setting, morphologic changes observed upon treatment of grit blasted zirconia discs with acid or alkaline do not translate into changes in MG63 cell adhesion or differentiation and are comparable to findings with anodized titanium discs.